References
[1] W.H. Organization, ed., WHO Handbook on Indoor Radon: A Public Health Perspective, 2009.
[2] L. Corrales, R. Rosell, A.F. Cardona, C. Martín, Z.L. ZataraiN.-B.arrón, O. Arrieta, Lung cancer in never smokers: The role of different risk factors other than tobacco smoking, Crit. Rev. Oncol.Hematol. 148 (2020) 102895. https://doi.org/10.1016/j.critrevonc.2020.102895.
[3] S.-H. Kim, W.J. Hwang, J.-S. Cho, D.R. Kang, Attributable risk of lung cancer deaths due to indoor radon exposure, Ann. Occup. Environ. Med. 28 (2016) 8. https://doi.org/10.1186/s40557-016-0093-4.
[4] R.A. Parent, Radon, in: [“Philip Wexler”] (Ed.), Encyclopedia of Toxicology (Second Edition), Second Edition, Elsevier, New York, 2005: pp. 617–620. https://doi.org/10.1016/b0-12-369400-0/00830-9.
[5] D.D. Pearson, J.M. Danforth, A.A. Goodarzi, Radon (222Rn) gas, in: [“Philip Wexler”] (Ed.), Academic Press, Oxford, 2024: pp. 129–139. https://doi.org/10.1016/b978-0-12-824315-2.00552-2.
[6] J. Chen, D. Moir, J. Whyte, Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey., Radiat. Prot. Dosim. 152 (2012) 9–13. https://doi.org/10.1093/rpd/ncs147.
[7] H. Bielefeldt-Ohmann, P.C. Genik, C.M. Fallgren, R.L. Ullrich, M.M. Weil, Animal studies of charged particle-induced carcinogenesis., Heal. Phys. 103 (2012) 568–76. https://doi.org/10.1097/hp.0b013e318265a257.
[8] N. Hunter, C.R. Muirhead, Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations, J. Radiol. Prot. 29 (2009) 5–21. https://doi.org/10.1088/0952-4746/29/1/r01.
[9] 1990 Recommendations of the International Commission on Radiological Protection., Ann. ICRP 21 (1991) 1–201.
[10] A. Sollazzo, S. Shakeri-Manesh, A. Fotouhi, J. Czub, S. Haghdoost, A. Wojcik, Interaction of low and high LET radiation in TK6 cells—mechanistic aspects and significance for radiation protection, J. Radiol. Prot. 36 (2016) 721–735. https://doi.org/10.1088/0952-4746/36/4/721.
[11] A. Sollazzo, B. Brzozowska, L. Cheng, L. Lundholm, H. Scherthan, A. Wojcik, Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells., Int. J. Mol. Sci. 19 (2018) 519. https://doi.org/10.3390/ijms19020519.
[12] M.F. Rayner-Canham, G.W. Rayner-Canham, Harriet Brooks—Pioneer nuclear scientist, Am. J. Phys. 57 (1989) 899–902. https://doi.org/10.1119/1.15843.
[13] C. Barus, Radioactivity. By E. Rutherford, D.Sc., F.R.S., R.R.S.C., MacDonald Professor of Physics, McGill University, Montreal; Cambridge Physical Series. Cambridge, University Press, 1904., Science 21 (1905) 697–698. https://doi.org/10.1126/science.21.540.697.
[14] Wilhelm C. Hueper, M.D.: A tribute, J. Natl. Cancer Inst. 62 (1979) 713–713. https://doi.org/10.1093/jnci/62.4.713.
[15] C. Sellers, Discovering environmental cancer: Wilhelm Hueper, post-World War II epidemiology, and the vanishing clinician’s eye., Am. J. Public Heal. 87 (2011) 1824–1835. https://doi.org/10.2105/ajph.87.11.1824.
[16] M. Kreuzer, L. Walsh, M. Schnelzer, A. Tschense, B. Grosche, Radon and cancers other than lung cancer in uranium miners – Results of the German uranium miner cohort study, Radioprotection 43 (2008) 032. https://doi.org/10.1051/radiopro:2008635.
[17] S. Darby, D. Hill, A. Auvinen, J.M. Barros-Dios, H. Baysson, F. Bochicchio, H. Deo, R. Falk, F. Forastiere, M. Hakama, I. Heid, L. Kreienbrock, M. Kreuzer, F. Lagarde, I. Mäkeläinen, C. Muirhead, W. Oberaigner, G. Pershagen, A. Ruano-Ravina, E. Ruosteenoja, A.S. Rosario, M. Tirmarche, L. Tomáscaron;ek, E. Whitley, H.-E. Wichmann, R. Doll, Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, BMJ 330 (2005) 223. https://doi.org/10.1136/bmj.38308.477650.63.
[18] J.M. Ham, Report of the Royal Commission on the Health and Safety of Workers in Mines., Ministry of the Attorney General, Toronto, 1976.
[19] R.A. Kusiak, A.C. Ritchie, J. Muller, J. Springer, Mortality from lung cancer in Ontario uranium miners., British Journal of Industrial Medicine 50 (1993) 920. https://doi.org/10.1136/oem.50.10.920.
[20] A.C. George, The history, development and the present status of the radon measurement programme in the United States of America, 167 (2015) 8–14. https://doi.org/10.1093/rpd/ncv213.
[21] G. Nicholls, The ebb and flow of radon., Am J Public Health 89 (1999) 993–5. https://doi.org/10.2105/ajph.89.7.993.
[22] IARC, IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans Volume 43, Man-Made Mineral Fibres and Radon, (1988).
[23] D. Krewski, J.H. Lubin, J.M. Zielinski, M. Alavanja, V.S. Catalan, R.W. Field, J.B. Klotz, E.G. L??tourneau, C.F. Lynch, J.I. Lyon, D.P. Sandler, J.B. Schoenberg, D.J. Steck, J.A. Stolwijk, C. Weinberg, H.B. Wilcox, Residential Radon and Risk of Lung Cancer: A Combined Analysis of 7 North American Case-Control Studies, Epidemiology 16 (2005) 137–145. https://doi.org/10.1097/01.ede.0000152522.80261.e3.
[24] J.H. Lubin, Z.Y. Wang, J.D. Boice, Z.Y. Xu, W.J. Blot, L.D. Wang, R.A. Kleinerman, Risk of lung cancer and residential radon in China: Pooled results of two studies, Int. J. Cancer 109 (2004) 132–137. https://doi.org/10.1002/ijc.11683.
[25] P. Singh, P. Singh, S. Singh, B.K. Sahoo, B.K. Sapra, B.S. Bajwa, A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India, J. Radiat. Res. Appl. Sci. 8 (2015) 226–233. https://doi.org/10.1016/j.jrras.2015.01.008.
[26] J. Chen, A Summary of Residential Radon Surveys and the Influence of Housing Characteristics on Indoor Radon Levels in Canada, Heal. Phys. 121 (2021) 574–580. https://doi.org/10.1097/hp.0000000000001469.
[27] A. Ruano-Ravina, K.T. Kelsey, A. Fernández-Villar, J.M. Barros-Dios, Action levels for indoor radon: different risks for the same lung carcinogen?, Eur. Respir. J. 50 (2017) 1701609. https://doi.org/10.1183/13993003.01609-2017.
[28] D. Al-Azmi, T. Al-Abed, M.S. Alnasari, E.E. Borham, Z. Chekir, M.S. Khalifa, R. Shweikani, Coordinated indoor radon surveys in some Arab countries, Radioprotection 47 (2012) 205–217. https://doi.org/10.1051/radiopro/2011160.
[29] L. Sahin, H. Çetinkaya, M.M. Saç, M. Içhedef, Determination of radon and radium concentrations in drinking water samples around the city of Kutahya, Radiat. Prot. Dosim. 155 (2013) 474–482. https://doi.org/10.1093/rpd/nct019.
[30] L.D. Maria, S. Sponselli, A. Caputi, G. Delvecchio, G. Giannelli, A. Pipoli, F. Cafaro, S. Zagaria, D. Cavone, R. Sardone, L. Vimercati, Indoor Radon Concentration Levels in Healthcare Settings: The Results of an Environmental Monitoring in a Large Italian University Hospital, Int. J. Environ. Res. Public Heal. 20 (2023) 4685. https://doi.org/10.3390/ijerph20064685.
[31] T. Anastasiou, H. Tsertos, S. Christofides, G. Christodoulides, Indoor radon (222Rn) concentration measurements in Cyprus using high-sensitivity portable detectors, J. Environ. Radioact. 68 (2003) 159–169. https://doi.org/10.1016/s0265-931x(03)00052-3.
[32] J. Gaskin, D. Coyle, J. Whyte, D. Krewksi, Global Estimate of Lung Cancer Mortality Attributable to Residential Radon, Environ. Heal. Perspect. 126 (2018) 057009. https://doi.org/10.1289/ehp2503.
[33] S.M. Khan, D.D. Pearson, E.L. Eldridge, T.A. Morais, M.I.C. Ahanonu, M.C. Ryan, J.M. Taron, A.A. Goodarzi, Rural communities experience higher radon exposure versus urban areas, potentially due to drilled groundwater well annuli acting as unintended radon gas migration conduits, Sci. Rep. 14 (2024) 3640. https://doi.org/10.1038/s41598-024-53458-6.
[34] S.M. Khan, D.D. Pearson, T. Rönnqvist, M.E. Nielsen, J.M. Taron, A.A. Goodarzi, Rising Canadian and falling Swedish radon gas exposure as a consequence of 20th to 21st century residential build practices, Sci. Rep. 11 (2021) 17551. https://doi.org/10.1038/s41598-021-96928-x.
[35] C. Sabbarese, F. Ambrosino, A. D’Onofrio, Development of radon transport model in different types of dwellings to assess indoor activity concentration, J. Environ. Radioact. 227 (2021) 106501. https://doi.org/10.1016/j.jenvrad.2020.106501.
[36] F.K.T. Stanley, J.L. Irvine, W.R. Jacques, S.R. Salgia, D.G. Innes, B.D. Winquist, D. Torr, D.R. Brenner, A.A. Goodarzi, Radon exposure is rising steadily within the modern North American residential environment, and is increasingly uniform across seasons, Sci. Rep. 9 (2019) 18472. https://doi.org/10.1038/s41598-019-54891-8.
[37] Ryan, R.; O’Beirne-Ryan, Anne, Uranium occurrences in the Horton Group of the Windsor area, Nova Scotia and the environmental implications for the Maritimes Basin, Atlantic Geology 45 (2009) 171–190.
[38] I. Gilbert, Shrinkage, Cracking and Deflection-the Serviceability of Concrete Structures, Electron. J. Struct. Eng. 1 (2001) 15–37. https://doi.org/10.56748/ejse.1121.
[39] R.V. Silva, J. de Brito, R.K. Dhir, Prediction of the shrinkage behavior of recycled aggregate concrete: A review, Constr. Build. Mater. 77 (2015) 327–339. https://doi.org/10.1016/j.conbuildmat.2014.12.102.
[40] F.K.T. Stanley, S. Zarezadeh, C.D. Dumais, K. Dumais, R. MacQueen, F. Clement, A.A. Goodarzi, Comprehensive survey of household radon gas levels and risk factors in southern Alberta, Can. Méd. Assoc. Open Access J. 5 (2017) E255–E264. https://doi.org/10.9778/cmajo.20160142.
[41] N.L. Cholowsky, M.J. Chen, G. Selouani, S.C. Pett, D.D. Pearson, J.M. Danforth, S. Fenton, E. Rydz, M.J. Diteljan, C.E. Peters, A.A. Goodarzi, Consequences of changing Canadian activity patterns since the COVID-19 pandemic include increased residential radon gas exposure for younger people, Sci. Rep. 13 (2023) 5735. https://doi.org/10.1038/s41598-023-32416-8.
[42] J.L. Irvine, J.A. Simms, N.L. Cholowsky, D.D. Pearson, C.E. Peters, L.E. Carlson, A.A. Goodarzi, Social factors and behavioural reactions to radon test outcomes underlie differences in radiation exposure dose, independent of household radon level, Sci. Rep. 12 (2022) 15471. https://doi.org/10.1038/s41598-022-19499-5.
[43] J.A. Simms, D.D. Pearson, N.L. Cholowsky, J.L. Irvine, M.E. Nielsen, W.R. Jacques, J.M. Taron, C.E. Peters, L.E. Carlson, A.A. Goodarzi, Younger North Americans are exposed to more radon gas due to occupancy biases within the residential built environment, Sci. Rep. 11 (2021) 6724. https://doi.org/10.1038/s41598-021-86096-3.
[44] J. Chen, Canadian Lung Cancer Relative Risk from Radon Exposure for Short Periods in Childhood Compared to a Lifetime, Int. J. Environ. Res. Public Heal. 10 (2013) 1916–1926. https://doi.org/10.3390/ijerph10051916.
[45] S. Sun, J.H. Schiller, A.F. Gazdar, Lung cancer in never smokers — a different disease, Nat. Rev. Cancer 7 (2007) 778–790. https://doi.org/10.1038/nrc2190.
[46] N.C. Coleman, R.T. Burnett, J.D. Higbee, J.S. Lefler, R.M. Merrill, M. Ezzati, J.D. Marshall, S.-Y. Kim, M. Bechle, A.L. Robinson, C.A. Pope, Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US adults, Cancer Causes Control 31 (2020) 767–776. https://doi.org/10.1007/s10552-020-01317-w.
[47] J. Subramanian, R. Govindan, Lung Cancer in Never Smokers: A Review, J. Clin. Oncol. 25 (2007) 561–570. https://doi.org/10.1200/jco.2006.06.8015.
[48] D.R. Brenner, J.R. McLaughlin, R.J. Hung, Previous Lung Diseases and Lung Cancer Risk: A Systematic Review and Meta-Analysis, PLoS ONE 6 (2011) e17479. https://doi.org/10.1371/journal.pone.0017479.